Learning and Behavioral Stability — An Economic Interpretation of Genetic Algorithms

نویسنده

  • Thomas Riechmann
چکیده

This article tries to connect two separate strands of literature concerning genetic algorithms. On the one hand, extensive research took place in mathematics and closely related sciences in order to find out more about the properties of genetic algorithms as stochastic processes. On the other hand, recent economic literature uses genetic algorithms as a metaphor for social learning. This paper will face the question what an economist can learn from the mathematical branch of research, especially concerning the convergence and stability properties of the genetic algorithm. It is shown that genetic algorithm learning is a compound of three different learning schemes. First, every particular scheme is analyzed. Then it will be pointed out that it is the combination of the three schemes that gives genetic algorithm learning its special flair: A kind of stability somewhere in between asymptotic convergence and explosion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Using and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generators

With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous...

متن کامل

A Comparative Study of Four Evolutionary Algorithms for Economic and Economic-Statistical Designs of MEWMA Control Charts

The multivariate exponentially weighted moving average (MEWMA) control chart is one of the best statistical control chart that are usually used to detect simultaneous small deviations on the mean of more than one cross-correlated quality characteristics. The economic design of MEWMA control charts involves solving a combinatorial optimization model that is composed of a nonlinear cost function ...

متن کامل

Economic Design of T2 −V SSC Chart Using Genetic Algorithms

The principal function of a control chart is to help management distinguish different sources of variation in a process. Control charts are widely used as a graphical tool to monitor a process in order to improve the quality of the product. Chen and Hsieh (2007) have designed a T2 control chart using a Variable Sampling Size and Control limits (V SSC) scheme. They have shown that using the V SSC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998